Gradient recovery for elliptic interface problem: II. Immersed finite element methods

نویسندگان

  • Hailong Guo
  • Xu Yang
چکیده

This is the second paper on the study of gradient recovery for elliptic interface problem. In our previous work [H. Guo and X. Yang, 2016, arXiv:1607.05898], we developed a novel gradient recovery technique for finite element method based on body-fitted mesh. In this paper, we propose new gradient recovery methods for two immersed interface finite element methods: symmetric and consistent immersed finite method [H. Ji, J. Chen and Z. Li, J. Sci. Comput., 61 (2014), 533–557] and Petrov-Galerkin immersed finite element method [T.Y. Hou, X. H. Wu and Y. Zhang, Commun. Math. Sci., 2 (2004), 185–205, and S. Hou and X. D. Liu, J. Comput. Phys., 202 (2005), 411–445]. Compared to bodyfitted mesh based gradient recover methods, immersed finite element methods provide a uniform way of recovering gradient on regular meshes. Numerical examples are presented to confirm the superconvergence of both gradient recovery methods. Moreover, they provide asymptotically exact a posteriori error estimators for both immersed finite element methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Superconvergence of immersed finite element methods for interface problems

In this article, we study superconvergence properties of immersed finite element methods for the one dimensional elliptic interface problem. Due to low global regularity of the solution, classical superconvergence phenomenon for finite element methods disappears unless the discontinuity of the coefficient is resolved by partition. We show that immersed finite element solutions inherit all desir...

متن کامل

Immersed-Interface Finite-Element Methods for Elliptic Interface Problems with Nonhomogeneous Jump Conditions

In this work, a class of new finite-element methods, called immersed-interface finite-element methods, is developed to solve elliptic interface problems with nonhomogeneous jump conditions. Simple non–body-fitted meshes are used. A single function that satisfies the same nonhomogeneous jump conditions is constructed using a level-set representation of the interface. With such a function, the di...

متن کامل

Gradient Recovery for Elliptic Interface Problem: I. Body-fitted Mesh

In this paper, we propose a novel gradient recovery method for elliptic interface problem using body-fitted mesh in two dimension. Due to the lack of regularity of solution at interface, standard gradient recovery methods fail to give superconvergent results, and thus will lead to overrefinement when served as a posteriori error estimator. This drawback is overcome by designing an immersed grad...

متن کامل

Immersed Finite Element Methods for Elliptic Interface Problems with Non-homogeneous Jump Conditions

Abstract. This paper is to develop immersed finite element (IFE) functions for solving second order elliptic boundary value problems with discontinuous coefficients and non-homogeneous jump conditions. These IFE functions can be formed on meshes independent of interface. Numerical examples demonstrate that these IFE functions have the usual approximation capability expected from polynomials emp...

متن کامل

A Priori Error Estimates for Some Discontinuous Galerkin Immersed Finite Element Methods

In this paper, we derive a priori error estimates for a class of interior penalty discontinuous Galerkin (DG) methods using immersed finite element (IFE) functions for a classic second-order elliptic interface problem. The error estimation shows that these methods can converge optimally in a mesh-dependent energy norm. The combination of IFEs and DG formulation in these methods allows local mes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 338  شماره 

صفحات  -

تاریخ انتشار 2017